Read the first chapter of The Bare Bones

BareBmecDue to requests for a sampler of my forthcoming book from Indiana University Press, The Bare Bones, I am now making available a PDF of the first chapter. I think this will give you a feel for the tone of the book.

Thanks to everyone for all of the interest and enthusiasm for the book. It was truly a labor of love, and I hope many of you will find it enjoyable to read and useful to those who may use it as an educational resource.

The Bare Bones, Chapter 1

I am also giving another sneak preview at one of the figures, this one from Chapter 2:

Carnivorous mammals, such as a cat, tend to have a jaw joint in line with their sharp, shearing teeth, much as the handles of a pair of scissors align with the blades.  This puts the best cutting surface towards the back of the jaws.  In contrast, herbivorous mammals such as horses have a jaw joint located above the tooth row, allowing their teeth to simultaneously contact one another like a nutcracker.

Carnivorous mammals, such as a cat, tend to have a jaw joint in line with their sharp, shearing teeth, much as the handles of a pair of scissors align with the blades. This puts the best cutting surface towards the back of the jaws. In contrast, herbivorous mammals such as horses have a jaw joint located above the tooth row, allowing their teeth to simultaneously contact one another like a nutcracker.

Also remember, you can preorder The Bare Bones through Indiana University Press or Amazon.

If you are into e-books, it can also be purchased as an e-book. See the Indiana University Press website for links to the appropriate retailers.

The Bare Bones – An Unconventional Evolutionary History of the Skeleton

I am happy to announce that I will be publishing my first book, The Bare Bones: An Unconventional Evolutionary History of the Skeleton with Indiana University Press. This has been a labor of love over the past 6 years, and it is great to see it finally coming to fruition.

What is the book about? An accessible guide to the evolutionary history of the skeleton — from the Indiana University Press “blurb”:

What can we learn about the evolution of jaws from a pair of scissors? How does the flight of a tennis ball help explain how fish overcome drag? What do a spacesuit and a chicken egg have in common? Highlighting the fascinating twists and turns of evolution across more than 540 million years, paleobiologist Matthew Bonnan uses everyday objects to explain the emergence and adaptation of the vertebrate skeleton. . .What can camera lenses tell us about the eyes of marine reptiles? How does understanding what prevents a coffee mug from spilling help us understand the posture of dinosaurs?. . .The answers to these and other intriguing questions illustrate how scientists have pieced together the history of vertebrates from their bare bones. With its engaging and informative text, plus more than 200 illustrative diagrams created by the author, The Bare Bones is an unconventional and reader-friendly introduction to the skeleton as an evolving machine.
Here is an example figure:
Fig 17.4 Metronome of science

The metronome of speed. In a musical metronome, the speed of the ticking pendulum is controlled by a weight on its end. In this case, a slow tempo results from placing the metronome’s weight far away from the pivot, whereas placing the weight close to the pivot allows it to tick faster. Similarly, a hypothetical dinosaur with a long femur and short leg and foot segments would be relatively slow because the heavy muscles that move the thigh are spread far from the hip joint, much like a metronome weight displaced far from the pivot. In contrast, a hypothetical dinosaur with a short femur and long leg and foot segments would be relatively fast because now the heavy thigh muscles are bunched near the hip joint, much like a metronome weight placed close to the pivot.

Why did I write it? I was inspired to write this book when I began teaching my own vertebrate evolution and paleontology course for undergraduate students. What I found was that many of these students were fascinated by vertebrate evolution, but that few, if any, went on to careers in museums and academe. Instead, many of my students were future teachers, doctors, veterinarians, and perhaps even politicians. There are many excellent books available on vertebrate paleontology, many of which I consulted in writing this book, but their focus tends to be strongly taxonomic and linearly chronological: who is who, who is related to whom, and in what order do we find them. However, the books that had truly inspired me to become a paleontologist were those that tackled the issue of functional morphology and paleobiology: what does the skeleton tell us about how the animal moved, fed, and behaved? This is the type of questions that motivated me as a student to learn about vertebrate history.
During my undergraduate days, I stumbled upon a small book called The Evolution of Vertebrate Design by the late paleontologist Leonard Radinsky that would truly influence my approach to writing. Radinsky took a complex subject like vertebrate paleontology and, using cartoons and brief but informative language, distilled the essence of our evolutionary story into a format that was friendly and approachable. In fact, I initially used his book in my vertebrate paleontology and evolution courses because it served as a jumping-off point for exploring the rich tapestry of vertebrate life past and present.
Given that Radinsky passed away in 1985, his beautiful book was never updated. Despite its appeal to my students, with each passing year the stack of articles I was assigning to supplement the understandably dated material was becoming larger than the book itself! Simultaneously, as my research developed into understanding the evolution of dinosaur locomotion, I was beginning to question why I had never paid more attention to classical mechanics in my physics courses. When I took physics, I found the course to be absolutely dull and dry. However, if you can understand the way that the machines and tools that surround us in our daily lives work the way that they do, you can approach the skeleton the same way. And then I thought, what if I tried to write a book about the evolution of the vertebrate skeleton as if I were someone trying to teach my younger self about classical mechanics and physics? Using Radinsky’s book as an inspiration and launch point, I began writing the book now being published: what I hope is a friendly but somewhat unconventional introduction and exploration of the history of the skeleton, using machine metaphors, for those who want to learn but do not (yet) have the chops for anatomy.
Why should you buy this book? Among many reasons, the best is probably that I have included a figure of a cat overturning a Prius.

Combining physics and vertebrate paleontology

Often, students in biology and paleontology wonder why it is that we “force” them to take physics.  I ought to know — I was one of those students!  It wasn’t until later in graduate school that I began to appreciate the application of physics to matters of dinosaur movement.  I believe part of this reticence among many future biologists and paleontologists to embrace and understand physics is that they feel (as I once did) that it was mostly the arena of engineers and cosmologists.

Yet, the questions we are often so interested in about living organisms and those in the fossil record relate to physics.  How did they move?  Were they moving in water?  How could their heart pump blood to their head?  How did a giant sauropod move, let alone stand, without breaking its bones?  So, if you are interested in dinosaurs and other magnificent animals of the past in the context of how they went about their daily lives, then you are interested in physics.

When I first began teaching vertebrate paleontology back in 2003, my goal then as now was to communicate to biology and paleontology students how modern vertebrate skeletons and body form are related to their function.  Too often, in my opinion, we tend to emphasize taxonomy and relationships over how, as scientists, we reconstruct paleobiology.  To be clear, taxonomy and the study of evolutionary relationships (systematics) are hugely important — they provide the context in which we test evolutionary hypotheses.  However, I wanted to strike a balance in my courses of teaching how the vertebrates were related in combination with how they lived their lives and responded to the physical world.

Today in my vertebrate paleontology course at Richard Stockton College, I hope a new group of students has begun to appreciate this intersection among biology, paleontology, and physics.  In the lab, students used a small wind tunnel and “smoke” from a fog machine to test how three different fossil fishes may have moved through the water.  I have found it is one thing to talk about Bernoulli’s Principle or discuss friction and pressure drag.  It is a whole other kettle of fish (pun intended) to see for one’s self how body shape actually changes the fluid around it.

Each group of students was assigned a fossil fish to research and model out of clay in lab.  Then, after hypothesizing how they thought their particular fish would behave relative to the water current (or in this case, the air current with “smoke”), they put their models in the wind tunnel, turned on the smoke, and put their hypotheses to the test.  They will later present their findings to the class.  My hope in all of this is that these students appreciate that our hypotheses about past life rely heavily on our models of the present flesh, bone, and physical laws.

Student group modeling and studying the effect of body shape on fluid movement in the early chondrichthyan, _Cladoselache_.

Student group modeling and studying the effect of body shape on fluid movement in the early chondrichthyan, _Cladoselache_.  Our wind tunnel can be seen in the background, upper left.

The _Cladoselache_ model sculpted by students based on data from fossils.

The _Cladoselache_ model sculpted by students based on data from fossils.

The student group studying the heterostracan (jawless fish) _Drepanaspis_.

The student group studying the heterostracan (jawless fish) _Drepanaspis_.

_Drepanaspis_ model.

_Drepanaspis_ model.

The student group studying the osteostracan (jawless fish), _Hemicyclaspis_.

The student group studying the osteostracan (jawless fish), _Hemicyclaspis_.

The _Hemicyclaspis_ model.

The _Hemicyclaspis_ model.

The _Hemicyclaspis_ model in our wind tunnel, sitting on a box of clay to prop it into the (faintly visible) stream of "smoke."

The _Hemicyclaspis_ model in our wind tunnel, sitting on a box of clay to prop it into the (faintly visible) stream of “smoke.”

I want to dedicate this short post to the following people at Richard Stockton College.  First, having a wind tunnel and smoke machine would not have happened at all were it not for the help of our shop staff in the Natural Sciences — Bill Harron, Mike Farrell, and Mike Santoro.  They worked on this small scale wind tunnel with my input, and helped give our students a wonderful lab experience.

Second, Christine Shairer was invaluable for her help with getting me the materials my students and I needed to do this small-scale experiment.

Finally, third, Dr. Jason Shulman in physics who is a colleague, research collaborator, and one of the few physicists willing to put up with a paleontologist who is constantly asking what I can only assume are ignorant and humorously simple questions.  If only I had had such an enthusiastic professor when I was questioning why I had to learn physics all those years ago!