Yes, climate change is real. Yes, humans have played a role.

Today on the first full day of a new presidential administration that has already pivoted in digital media to downplay or possibly scrub climate change from the national conversation; and to join other scientists concerned with support of science including the science of climate change #USofScience, I am reposting my older post on science and climate change from a few years ago. The message is as relevant as ever. Climate change is real. The rapid climate change documented in recent history is tied to human activity. No amount of political argument or wishing it away can change that. I say that as a former climate change denier. I emphasize that climate data are what they are — carbon dioxide doesn’t care whether you are a Democrat, Republican, or Independent. Rapid climate change is occurring, and humans have played a role. What follows is my original and slightly tweaked post.

As the National Center For Science Education has been demonstrating for some time now, denying biological evolution and denying climate change are part of a larger phenomenon related to science illiteracy.   But I think we often tend to conflate the knowing of scientific data with knowing the process of science itself.  As a college professor, I can tell you that  smart students who know a lot about the natural world don’t always actually know the process of science.  In one of my first lectures to undergraduates in the introductory biology majors course, when I press them to define science, hypothesis, and so on, very few can.  And I have come to believe that our current societal issue with accepting science is a fundamental misunderstanding of the process, not simply a dearth of facts.

In my undergraduate days, I was a climate change denier.  That’s correct — I felt that the evidence was at best equivocal for global warming.  If you couldn’t prove it directly, how confident could we be?  In fact, I felt a good amount of the environmental “science” out there was nothing more than misplaced hysteria or political propaganda. For those who do know me and my political leanings, you are probably surprised.

So I speak from experience when I say that I understand the reservations among many people when it comes to climate change.  Ask any climate scientist, and they will never tell you with 100% certainty that their predictions will come to pass.  In fact, these scientists rely on models of climate, and those models are a hypothesis of reality, not reality itself.  Remember, I was a science major with aspirations of becoming a paleontologist, so my undergraduate self decided that if we couldn’t be certain, we shouldn’t go around broadcasting that it was the end of the world.  In my undergraduate head, the best science was certain, and that was why paleontology was so difficult — a lot of uncertainty.

So here’s the thing — a climate scientist can show you a lot of data (see below), and can tell you based on their expertise which are the most probable outcomes of current trends, but if you were my undergraduate self, you would not be convinced.

From Wikipedia Commons: “This image is a comparison of 10 different published reconstructions of mean temperature changes during the 2nd millennium.”

Whether or not my younger self (let alone my older self) was stubborn or simply a bit daft (probably both), I again point out a key feature in the thought process: if it isn’t certain, it’s not good science.

So, the assumption or implication that good science is certain is the first part of the puzzle.  The second part of the stubbornness by many of us to accept climate change or perhaps biological evolution is that we want evidence presented in a court room.  We want the TV show Law & Order, and we want the good lawyer to give us an iron-clad argument, or to show that our opponent is a lesser person, or to literally give us a smoking gun.  We are convinced that science works like this, and that the person with the best argument and evidence wins.  And most importantly, that the winner stays the winner.  Nothing can ever overturn the win.  Good science should be certain and win the day’s argument, for now and forever.

But of course, science has little or nothing to do with certainty and court room drama.  There is no certainty in science — there is simply probability.  Because a good scientist recognizes that we are only human, and we can only realistically deal in samples, we can’t measure every aspect of the known universe, and we certainly can’t have all the data on all the clouds, carbon dioxide, and local temperatures.  Therefore, a good scientist will never say they have “proved” something — rather, they will indicate that their data suggest certain scenarios are more probable than others.  The higher the probability, the more confident one can be that the predictions may come to pass.

It took a while for this concept to sink in with me.  It took graduate school and having to do science, and taking an excellent seminar from Professor Emeritus Ronald Toth at Northern Illinois University, that finally made science as a process click.

(As an important aside, much of my thinking as a scientist I owe to Ron — so the “smart” stuff I say about evolution and science are me emulating him.  My evolution podcasts and understanding evolution website are extensions [and I hope a sincere form of flattery] of Ron’s approach.  Thank you, Ron!)

That means, as someone who earned a B.S. in Geology with a Biology major, I had no real concrete idea about science as a process!  I am not surprised nor judgmental that many of our undergraduates, let alone the larger public, don’t understand this either — but this I believe is what needs to be most addressed.

Even if you do succeed in uncovering something new or accurately predicting a trend, there will always be new data. The complaint you often hear about science is how we keep changing our damn minds — we knew Pluto was a planet, or we knew that birds were not dinosaurs, or we knew that cholesterol was bad, and so on. But the process of science requires that one keep testing the hypothesis, and to incorporate new data as it comes in.  So we’re not changing our minds to tick you off — we adapting our models and our understanding of the natural world as more data come rolling in.

What I realized at long last in graduate school was that scientists speak in probabilities.  And when you think about it, we deal in probabilities all the time, and we make decisions based on those probabilities, and we are okay with that.  Every time you get in a car, there is a probability you will be in an accident … but you probably still get in that car.  Imagine if someone told you that unless you could 100% guarantee that no accidents would ever occur, it was pointless to drive.

Okay, but now for something more ominous: what about the probability that you will get sick if you ingest salmonella bacteria.  I have been sickened myself by this nasty “bug,” and many people have died from salmonella poisoning.  But there will always be cases where someone ingests salmonella or another pathogen and doesn’t become sick.  Now imagine a friend tells you that since every time a person has ingested salmonella they haven’t always become ill or died, we don’t have enough data to know whether or not it is truly deadly.  Therefore, wasting money and resources on preventing the spread of salmonella is not advisable because we can’t know with 100% certainty that everyone who ingests it will get sick or die.  This person would probably not remain your friend for long.

Probability in science works along this spectrum — from low to high odds.  Low odds: you will be hit in the head and killed by a rouge meteorite tomorrow.  High odds: the climate will continue to change, with an overall trend toward higher global temperatures.  Can we be certain climate will change in these ways?  Not 100%.  But the probabilities are high … and that’s why we should be concerned: the scientific predictions of increasing global temperatures suggest our world will change in ways that, if we are not prepared, will be devastating.  Of course, we could wait until we’re certain, and we could wait for the ultimate court room battle of the sciences … but if the probabilities are high, why wait?  What are waiting for?  Waiting for all the data to come in (which will never happen) and waiting for 100% certainty (which will never happen) is simply another way of doing nothing in the face of probable danger.

If you understand that the process of science is by its very nature is one based on probability, not certainty, I think we begin to get to the heart of the scientific illiteracy problem.  Giving people more and more data won’t help if they sincerely believe that uncertainty means no one knows anything.  This is, I believe, the core issue with science literacy — and why our politicians, our media, and our public are so often mislead to disregard good science and its important predictions that effect us all.

Read the first chapter of The Bare Bones

BareBmecDue to requests for a sampler of my forthcoming book from Indiana University Press, The Bare Bones, I am now making available a PDF of the first chapter. I think this will give you a feel for the tone of the book.

Thanks to everyone for all of the interest and enthusiasm for the book. It was truly a labor of love, and I hope many of you will find it enjoyable to read and useful to those who may use it as an educational resource.

The Bare Bones, Chapter 1

I am also giving another sneak preview at one of the figures, this one from Chapter 2:

Carnivorous mammals, such as a cat, tend to have a jaw joint in line with their sharp, shearing teeth, much as the handles of a pair of scissors align with the blades.  This puts the best cutting surface towards the back of the jaws.  In contrast, herbivorous mammals such as horses have a jaw joint located above the tooth row, allowing their teeth to simultaneously contact one another like a nutcracker.

Carnivorous mammals, such as a cat, tend to have a jaw joint in line with their sharp, shearing teeth, much as the handles of a pair of scissors align with the blades. This puts the best cutting surface towards the back of the jaws. In contrast, herbivorous mammals such as horses have a jaw joint located above the tooth row, allowing their teeth to simultaneously contact one another like a nutcracker.

Also remember, you can preorder The Bare Bones through Indiana University Press or Amazon.

If you are into e-books, it can also be purchased as an e-book. See the Indiana University Press website for links to the appropriate retailers.

Jurassic World: Not About Science

As a dinosaur paleontologist, I was perhaps duty-bound to see Jurassic World … that and my 10-year-old daughter was keen to see it as well. I am teaching a freshman-only seminar on dinosaurs this fall, and that also made the choice to see the movie a no-brainer. I had only seen one or two brief previews of the movie and had avoided reading reviews of the plot so I could go into the movie with as few preconceptions as possible. Here are my thoughts.

Before I start, let me say that this is not a review of the story or much about the accuracy of the science. That has already been done in multiple ways by many of my colleagues in the dinosphere. There is not much new I could add there.  Therefore, there are no spoilers here unless you consider what is shown in the movie previews as spoilers.

I was not surprised and kind of disappointed by I what I saw. In a sentence: it was a monster movie and not a movie about dinosaurs or science. There were no paleontologist characters in the movie, and the dinosaurs were there to devour people and cause mayhem or serve as background. As anyone would know from the movie previews, this is again a retread of technology gone wrong and hubris. No one should be surprised by the basic plot and its outcome.

So here is my question: since this movie is clearly not about science and is, like the original Jurassic Park, yet another Frankenstein story, why should we as scientists care how accurate is? And I ask this question because we dinosaur paleontologists suffer from a public image problem. We are often considered to be kids who never grew up, but not “real” scientists. I am the first to admit that my fascination with dinosaurs started early, and that many of us have a friendly competition to see who was interested in dinosaurs the earliest. It does come with a certain badge of honor. But I think that outside of our small group, this doesn’t often help us be taken seriously.

I suppose, for example, one could point to someone like Neil DeGrasse Tyson, arguing that he engages the public with his take on science-fiction movies. But even here astronomy and physics have more science “street cred” than dinosaur paleontology. Tyson can let his nerd flag fly, so to speak, without much “damage” to the reputation of physics because his science is “the” science in the mind of the public. Nobody (sane) argues about gravity. Everyone, though, is happy to argue with dinosaur experts about what they think dinosaurs were like … perhaps in part because we all know the science is done by big kids who aren’t real scientists.

I agree and empathize with many of my colleagues that dinosaur movies often miss an opportunity to educate the public about science as a process as well as entertain. But I also think we tread a fine line here — one that may inadvertently only reinforce the stereotype of the nerdy (read “child-like” and “out-of-touch”) dinosaur paleontologist when we engage the “science” of a movie that is clearly not about science at all. This stereotype of the “big kid” dino-nerd is more damaging than just reputation. For example, the recent attempt to sell the privately-owned “Dueling Dinosaurs” was predicated on the identity of one of the dinosaurs as Nanotyrannus. Even when an expert on tyrannosaurids like Thomas Carr pointed out in great detail why Nanotyrannus is not real, it is perhaps easier to ignore his expertise in favor of profit partly because of the “big kid” stereotype.

My suggestion would be, rather than engaging the press in the predictable “this and that were wrong” conversation, why not simply say, “this is science fiction and a monster movie and it doesn’t represent paleontology.” Jurassic World is about as close to dinosaur paleontology as Star Wars is to astronomy. These movies can be inspiring to children and adults, but their main focus is a story, its plot, climax, and resolution, not scientific accuracy. And the sad part about Jurassic World is that the missed opportunity is less about the science (which is relatively non-existent) and more about the tired re-hashing of gender stereotypes and hubris/comeupance plot lines.

Dinosaur paleontology, for those of us who are experts, is a rigorous science with many insights to offer us in the present. And, yes, many of us have been enraptured with this science since childhood. There is nothing wrong with that. But understanding how stereotypes about our science and about us as scientists play in the larger world are equally important to recognize. We have an important message about the past and our future to impart to the public. Let’s not dilute our energies on the trivial details of an expensive and silly monster movie.

New interview on Prehistoric Pub

Just a brief post to point those interested to my interview with Jersey native and paleontology enthusiast Gary Vecchiarelli:

Thanks for the interview, Gary!


A hopeful message for those pursuing basic science careers

Giving advice often comes out sounding hollow or self-serving, but if I may be so bold, I’d like to give some hope to young people considering a career in the basic sciences.  My message is simple: you have choices.  That is what I feel needs to be said after reading several recent articles about the pitfalls and difficulties of landing science jobs in the academe.

Take, for example, the article posted by John Skyler at Talebearing about pursuing a science career. Everything this article discusses, from the crushing debt that can be incurred, to the delays in life transitions, to the difficulties in procuring grants, is all, sadly, very real.  And yet, this article, like so many, gives a somewhat skewed vision of what success is in the sciences: becoming a PI (Principal Investigator, the scientific team leader) at an R1 (a large, research-focused university).  There is an often unspoken assumption that success in science = a research heavy / team-leading position in a coveted and highly competitive corner of the market (medicine, bioengineering, etc.).

One way to think of this is by analogy to the music industry.  How many people long to be rock stars, living years in poverty hoping for a shot in a very competitive and harsh business, and often never succeeding in achieving that goal?  Of the few that do make it into stardom, many face almost inhuman pressures to keep producing hits, keep touring, and keep current.  A lot of burn out happens at all levels.  But, of course, there are other avenues to pursuing a career in music.  Perhaps not always so glamorous, sure, but there are many more job opportunities for sound engineers, writers, teachers, studio musicians, and so forth, all with music creation at their heart.  If you work a job in music that you love, you are a success — not just the rock stars.

The same is true for science careers.  If you are interested in basic science, there are several paths you can follow and there are more opportunities outside of the handful of very competitive jobs at the top rungs of the R1 universities.  I speak from experience and from honesty — there are choices.

Yes, we need intense basic research and our federal dollars need to increase to support the motivated souls who push the frontiers of knowledge in R1s day in and day out. But science also needs a lot of people who can juggle research and teaching both effectively, bringing research knowledge to undergraduates and laypeople, conveying the body of knowledge we generate to the public at large.  Being a good science teacher at a college or university is not a booby prize — there is a lot of skill and dedication required to reach the next generation of scientists and, dare I say, politicians.  You can derive a great deal of satisfaction and joy by turning new minds on to science.

And, once and for all, let’s end the myth that says that those of us who teach larger course loads cannot produce quality research.  We can and we do, often involving undergraduates in their first research experiences.  So if you love teaching as well as doing quality research, don’t be dissuaded from pursuing a career in the sciences — know that it can be done.

Be flexible.  Be willing to consider alternate paths to your career.  If you can teach certain subjects, your probability of landing a tenure-track job improves.  For example, for those of us in vertebrate paleontology, knowing your anatomy and being willing and able to teach it can open many more doors than if you only search for dedicated paleontology positions.  Remember that science is not one size fits all — just because you might not get a particular type of position does not mean there is nothing else to do and that your life is a failure.  Science benefits from a diversity of perspectives and approaches that cannot all occur in one setting.

Please don’t take this post to mean I think it will all go swimmingly.  I recognize that I am fortunate to have a tenure-track job, and that many equally or better-qualified individuals currently do not.  I am in no way trying to paint an overly rosy picture — pursuing a science career can be difficult.  It is also true that a Ph.D. is not enough — preparedness, networking, luck, timing, and tenacity all play large roles in how and where we land our jobs.  On top of all of this, there are also still, unfortunately, barriers related to gender and race that make a difficult career even more difficult for many talented individuals.

What I hope I can impart to those pursuing basic science careers is that whereas there are many difficulties you will face, there is not just one path to being successful.  Don’t measure your success by someone else’s standards.  You have enough obstacles as it is without also burdening yourself with one ideal of success.  It is possible to be happy and productive as a scientist in many different ways, and I wish you much luck and future success.

Combining physics and vertebrate paleontology

Often, students in biology and paleontology wonder why it is that we “force” them to take physics.  I ought to know — I was one of those students!  It wasn’t until later in graduate school that I began to appreciate the application of physics to matters of dinosaur movement.  I believe part of this reticence among many future biologists and paleontologists to embrace and understand physics is that they feel (as I once did) that it was mostly the arena of engineers and cosmologists.

Yet, the questions we are often so interested in about living organisms and those in the fossil record relate to physics.  How did they move?  Were they moving in water?  How could their heart pump blood to their head?  How did a giant sauropod move, let alone stand, without breaking its bones?  So, if you are interested in dinosaurs and other magnificent animals of the past in the context of how they went about their daily lives, then you are interested in physics.

When I first began teaching vertebrate paleontology back in 2003, my goal then as now was to communicate to biology and paleontology students how modern vertebrate skeletons and body form are related to their function.  Too often, in my opinion, we tend to emphasize taxonomy and relationships over how, as scientists, we reconstruct paleobiology.  To be clear, taxonomy and the study of evolutionary relationships (systematics) are hugely important — they provide the context in which we test evolutionary hypotheses.  However, I wanted to strike a balance in my courses of teaching how the vertebrates were related in combination with how they lived their lives and responded to the physical world.

Today in my vertebrate paleontology course at Richard Stockton College, I hope a new group of students has begun to appreciate this intersection among biology, paleontology, and physics.  In the lab, students used a small wind tunnel and “smoke” from a fog machine to test how three different fossil fishes may have moved through the water.  I have found it is one thing to talk about Bernoulli’s Principle or discuss friction and pressure drag.  It is a whole other kettle of fish (pun intended) to see for one’s self how body shape actually changes the fluid around it.

Each group of students was assigned a fossil fish to research and model out of clay in lab.  Then, after hypothesizing how they thought their particular fish would behave relative to the water current (or in this case, the air current with “smoke”), they put their models in the wind tunnel, turned on the smoke, and put their hypotheses to the test.  They will later present their findings to the class.  My hope in all of this is that these students appreciate that our hypotheses about past life rely heavily on our models of the present flesh, bone, and physical laws.

Student group modeling and studying the effect of body shape on fluid movement in the early chondrichthyan, _Cladoselache_.

Student group modeling and studying the effect of body shape on fluid movement in the early chondrichthyan, _Cladoselache_.  Our wind tunnel can be seen in the background, upper left.

The _Cladoselache_ model sculpted by students based on data from fossils.

The _Cladoselache_ model sculpted by students based on data from fossils.

The student group studying the heterostracan (jawless fish) _Drepanaspis_.

The student group studying the heterostracan (jawless fish) _Drepanaspis_.

_Drepanaspis_ model.

_Drepanaspis_ model.

The student group studying the osteostracan (jawless fish), _Hemicyclaspis_.

The student group studying the osteostracan (jawless fish), _Hemicyclaspis_.

The _Hemicyclaspis_ model.

The _Hemicyclaspis_ model.

The _Hemicyclaspis_ model in our wind tunnel, sitting on a box of clay to prop it into the (faintly visible) stream of "smoke."

The _Hemicyclaspis_ model in our wind tunnel, sitting on a box of clay to prop it into the (faintly visible) stream of “smoke.”

I want to dedicate this short post to the following people at Richard Stockton College.  First, having a wind tunnel and smoke machine would not have happened at all were it not for the help of our shop staff in the Natural Sciences — Bill Harron, Mike Farrell, and Mike Santoro.  They worked on this small scale wind tunnel with my input, and helped give our students a wonderful lab experience.

Second, Christine Shairer was invaluable for her help with getting me the materials my students and I needed to do this small-scale experiment.

Finally, third, Dr. Jason Shulman in physics who is a colleague, research collaborator, and one of the few physicists willing to put up with a paleontologist who is constantly asking what I can only assume are ignorant and humorously simple questions.  If only I had had such an enthusiastic professor when I was questioning why I had to learn physics all those years ago!