About Dr. Matt Bonnan

Dr. Matt Bonnan is a vertebrate paleobiologist who specializes in understanding the evolutionary anatomy of dinosaurs.

Why science definitions matter: a response to the NCSE’s Misconception Mondays

Dear fellow scientists and science educators: may I suggest the time has come to work together to standardize the major terminology of our field?  I don’t mean the terminology of specific disciplines, I am getting at the fundamentals here: what is science, and how do we effectively and efficiently communicate what a hypothesis, law, and theory are?

I am writing this post because I read with some dismay the recent National Center for Science Education’s blog Misconception Mondays: Hypotheses, Theories, and Laws, Oh My! by Stephanie Keep.  I encourage my readers to read her blog post and form your own opinions.  I want to be clear from the beginning that this is nothing personal about Stephanie Keep — her post simply caught my attention and serves as a spring board for discussing what I read and hear all too often from many of my colleagues.

The take home message from Keep’s post is this: it doesn’t matter what labels we give concepts in science, so long as science is being taught.  In essence, don’t get bogged down in semantics and lose the forest for the trees — it is more important that students understand the science.  At face value, this seems reasonable: don’t be pedantic be practical.

On deeper reflection, however, this attitude (an attitude shared by many in the sciences) is troublesome, because definitions and the meanings we attach to words do matter, especially for students and the public who vote on science issues.  Keep says:

People—especially scientists—like firm definitions. Science is full of technical terms that we learn to master (or learn to quickly look up on the Internet), and thanks to a mixture of precedent and state standards, many teachers keep making kids learn definitions for theory, law, and hypothesis in the introductory weeks of a new class. I’m not suggesting that kids shouldn’t learn what a hypothesis is—of course they should! Forming and testing hypotheses are fundamental parts of any scientific endeavor. But I am suggesting that we be willing to admit that there is often no good reason why something is called a law vs. a theory, or a hypothesis vs. a theory—and that’s okay.

But therein lies the fundamental problem with this approach — not just Keep’s approach, but, I would argue, the approach so many of us have been taught to take.  How can you teach a student how to test a hypothesis if you simultaneously tell them that we can’t tell if it’s a hypothesis or a theory?  These definitions do matter.

Something else is troublesome in Keep’s statement that, “many teachers keep making kids learn definitions for theory, law, and hypothesis in the introductory weeks of a new class.”  In any discipline, you learn what it is and how it works in the beginning so that you have a common language through which to teach and make sense of the core material.

If we are charged with doing science and with educating the public about science, shouldn’t we able to say: here is what science is, here are it’s limits, and here’s how the toolkit works?  Especially at the beginning of a class?  As scientists and science educators, we seem on the whole to be so circumspect about this because, I suspect, we appreciate that science is not about certainty but about probability.  Therefore, we are loathe to say we have a concrete definition because we fear that what we convey is an absolutism rather than messy reality.  Believe me — I understand and appreciate wanting to avoid teaching our students that science = unassailable truth.  But if this is a fear of looking too authoritarian, in my opinion, it has led to much confusion both among ourselves and the public at a time when science is under attack.

Dear scientists and science educators: it is okay to have firm definitions that define and describe what we do, and we need to give ourselves permission to be okay with that.  It is no longer okay for us to say to students, in essence, we can’t really describe or define what it is we do precisely, but you’ll know it when you see it.

It would be arrogant and presumptuous on my part to suggest I have the definitive answer or definitions for what we do, nor do any of us work and teach in a vacuum — much of what I teach my students is cobbled together from what I have found works for me as an instructor (borrowed and morphed from many gifted individuals), particularly the approach of a former graduate mentor, Dr. Ron Toth at Northern Illinois University.

But I would like to start a conversation about fundamentals.  Surely, science as a discipline is not an amorphous thing.  I suspect most of us would define it as a tool for understanding the natural world.  Many of us test hypotheses – these are predictive statements that can be tested and falsified which guide our research.  We often test our hypotheses under an explanatory umbrella we call a theory.  As an example, a paleontologist might test the relationships of various dinosaurs (a hypothesis called a phylogeny) using data collected from fossils, working under the explanation that they are closely or distantly related through common ancestry (a theory called biological evolution).

Laws, I will admit, often stick in many of our craws.  I have come to see scientific laws as testable descriptions of repeatable phenomena or processes.  If we define scientific laws in this way, we are now more clear about what should qualify.  For example, in her essay, Keep says,

Have you ever noticed that most of the “laws” in science tend to be in the physical sciences and astronomy? There aren’t a lot of “laws” in biology—in fact, I can’t think of any aside from Mendel’s Laws. Why is that? Is it because biology is a “soft science” while physics and astronomy are “hard sciences”? Not at all. It’s because people in those fields really liked the term “law.” No, really. That’s pretty much it.

I would argue that we do have laws in all the branches of science, we just don’t always call them that.  If a scientific law is a repeatable phenomenon or process, Genetic Dogma (DNA is transcribed and translated by RNA into proteins) is a law — it happens continuously in all living things, always the same — a repeatable phenomenon or process.  Natural Selection is a Law — all individuals vary, more individuals in a population are born than can survive, and those with variable traits that allow them reproduce viable offspring are “selected.”  Look at any population in the living world, and this process is on-going and repeatable.  How about calling the Cell Theory, the Cell Law?  After all, that living things are made of cells is pretty much a repeatably observable phenomenon.

This works for me and for teaching my students, but I am not suggesting I have the market cornered on this definition.  Rather, my point here is that when we have a clear definition, we can more easily comprehend what we are communicating to one another and to our students.  If I am testing a hypothesis, you and others know I am probably working under an explanation, a theory.  If I am testing a law, you and others know that if I find variation or the phenomenon does not repeat, I may be in a position to reject or modify that law.

We need to have this conversation because definitions do matter in science.  What you call something does matter, especially when you need it to convey a particular set of qualities.  True, there will always be exceptions to the definitions and the natural world is messy, but don’t let perfection be the enemy of progressScience is and should be definable — we don’t just know it when we see it.

I welcome any constructive feedback and ideas from all of my colleagues as to how we can and should move forward.  I want to thank Stephanie Keep for sparking this conversation.

For those who don’t know and who might be interested, I have outlined and explained my own approaching to teaching science and evolution.

Dr. Bonnan to give free dinosaur presentations at Southern New Jersey libraries

A short post to let all interested New Jersey parents and their children know that I will be giving a series of free dinosaur presentations at libraries throughout Atlantic County this July, 2014!  My presentations consist of fossils, bones, and dinosaur artwork featuring dinosaurs selected by audience members!

Check out the attached PDF link and poster below, and see when I’m coming to a library near you!

Atlantic County Library Presentations PDF Schedule 2014

Bonnan_Dinosaurs_July 2014

The NAMS Research Symposium Winners

Just a short post to make you aware that the winners of the 2014 NAMS Research Symposium are now posted on-line.

A big series of “thank you”s is necessary.  On behalf of Tara Luke and myself, we thank each and every one of our faculty and students for such an amazing turn-out at the NAMS Research Symposium this spring!  Thanks go out to all of the NAMS staff for their help with our student research. I also want to thank the judges for their time and input:  Adam Aguiar, David Burleigh, Justine Ciraolo, Nate Hartman, Marie Jelinski, and Chrissy Schairer.  We also want to again extend our thanks to David Dimmerman and his staff for coordinating the poster printing.  Finally, we thank Dean Weiss, Provost Kesselman, and President Saatkamp for their continuing support of our student research.

The Richard Stockton College of New Jersey NAMS Research Symposium Abstracts Now On-line

The 2013 NAMS Research Symposium was very well attended, with over 40 posters and many more students and faculty.

The 2013 NAMS Research Symposium was very well attended, with over 40 posters and many more students and faculty.

This is a short post to announce that the NAMS Research Symposium abstracts are now on-line in HTML format as well as available in PDF format: NAMS Symposium 2014 -Abstract Book-.  We have 55 posters this year!

Find out more by going to the NAMS Symposium Research page.  We hope you can join us this Friday, April 25.

Combining physics and vertebrate paleontology

Often, students in biology and paleontology wonder why it is that we “force” them to take physics.  I ought to know — I was one of those students!  It wasn’t until later in graduate school that I began to appreciate the application of physics to matters of dinosaur movement.  I believe part of this reticence among many future biologists and paleontologists to embrace and understand physics is that they feel (as I once did) that it was mostly the arena of engineers and cosmologists.

Yet, the questions we are often so interested in about living organisms and those in the fossil record relate to physics.  How did they move?  Were they moving in water?  How could their heart pump blood to their head?  How did a giant sauropod move, let alone stand, without breaking its bones?  So, if you are interested in dinosaurs and other magnificent animals of the past in the context of how they went about their daily lives, then you are interested in physics.

When I first began teaching vertebrate paleontology back in 2003, my goal then as now was to communicate to biology and paleontology students how modern vertebrate skeletons and body form are related to their function.  Too often, in my opinion, we tend to emphasize taxonomy and relationships over how, as scientists, we reconstruct paleobiology.  To be clear, taxonomy and the study of evolutionary relationships (systematics) are hugely important — they provide the context in which we test evolutionary hypotheses.  However, I wanted to strike a balance in my courses of teaching how the vertebrates were related in combination with how they lived their lives and responded to the physical world.

Today in my vertebrate paleontology course at Richard Stockton College, I hope a new group of students has begun to appreciate this intersection among biology, paleontology, and physics.  In the lab, students used a small wind tunnel and “smoke” from a fog machine to test how three different fossil fishes may have moved through the water.  I have found it is one thing to talk about Bernoulli’s Principle or discuss friction and pressure drag.  It is a whole other kettle of fish (pun intended) to see for one’s self how body shape actually changes the fluid around it.

Each group of students was assigned a fossil fish to research and model out of clay in lab.  Then, after hypothesizing how they thought their particular fish would behave relative to the water current (or in this case, the air current with “smoke”), they put their models in the wind tunnel, turned on the smoke, and put their hypotheses to the test.  They will later present their findings to the class.  My hope in all of this is that these students appreciate that our hypotheses about past life rely heavily on our models of the present flesh, bone, and physical laws.

Student group modeling and studying the effect of body shape on fluid movement in the early chondrichthyan, _Cladoselache_.

Student group modeling and studying the effect of body shape on fluid movement in the early chondrichthyan, _Cladoselache_.  Our wind tunnel can be seen in the background, upper left.

The _Cladoselache_ model sculpted by students based on data from fossils.

The _Cladoselache_ model sculpted by students based on data from fossils.

The student group studying the heterostracan (jawless fish) _Drepanaspis_.

The student group studying the heterostracan (jawless fish) _Drepanaspis_.

_Drepanaspis_ model.

_Drepanaspis_ model.

The student group studying the osteostracan (jawless fish), _Hemicyclaspis_.

The student group studying the osteostracan (jawless fish), _Hemicyclaspis_.

The _Hemicyclaspis_ model.

The _Hemicyclaspis_ model.

The _Hemicyclaspis_ model in our wind tunnel, sitting on a box of clay to prop it into the (faintly visible) stream of "smoke."

The _Hemicyclaspis_ model in our wind tunnel, sitting on a box of clay to prop it into the (faintly visible) stream of “smoke.”

I want to dedicate this short post to the following people at Richard Stockton College.  First, having a wind tunnel and smoke machine would not have happened at all were it not for the help of our shop staff in the Natural Sciences — Bill Harron, Mike Farrell, and Mike Santoro.  They worked on this small scale wind tunnel with my input, and helped give our students a wonderful lab experience.

Second, Christine Shairer was invaluable for her help with getting me the materials my students and I needed to do this small-scale experiment.

Finally, third, Dr. Jason Shulman in physics who is a colleague, research collaborator, and one of the few physicists willing to put up with a paleontologist who is constantly asking what I can only assume are ignorant and humorously simple questions.  If only I had had such an enthusiastic professor when I was questioning why I had to learn physics all those years ago!

New students … same old rats

Just a short post to introduce you to some of the “newer” students in the Bonnan Lab: Kelsey Gamble and Caleb Bayewu.

Kelsey Gamble in Lab

Kelsey Gamble with Peter the rat, showing off the vest she designed for tracking our furry friends.

Undergraduate Caleb Bayewu with another rat we dubbed Jabba.

Undergraduate Caleb Bayewu with another rat we dubbed Jabba.

Today we were working with some Sprague-Dawley rats to track how much their forelimb is abducted at the elbow (pulled away from the side of the body) during locomotion.  We use an apparatus called the OptiTrack V120 which consists of 3 integrated infrared cameras that send out rapid pulses of IR light.  The rats wear a vest with two markers on the back which gives us the position of their body’s mid-line, and another small marker is affixed to their elbow (with the equivalent of eyelash glue) … with tender loving care, of course.

Peter the rat walking along his track, showing off his tracking vest and the tracking marker on his elbow.

Peter the rat walking along his track, showing off his tracking vest and the tracking marker on his elbow.

Peter the rat was more interested in exploring the lab than being measured for science.

Peter the rat was more interested in exploring the lab than being measured for science.

You know you’re a scientist when after months of trial and error and fiddling with the equipment, we literally jumped for joy today when we successfully recorded all five walking trials!  Why are we doing this?  Stay tuned …